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Motivation

Challanges of Medical Image Processing

large volume data sets (5123 voxels and more)

or / and

real time performance

Variational Approaches

typically elliptic PDE

e. g. image denoising

e. g. non-rigid image registration

optimized MG solver for time-dependent Poisson equation

compare with optimized FFT-based implementations
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Linear Heat Equation

∂u

∂t
(x, t)−∆u(x, t) = f (x), u(x, 0) = u0(x) (1)

with time t ∈ R+, u, f : Ω ⊂ R3 → R, x ∈ Ω,
initial solution u0 : Ω ⊂ R3 → R and
homogeneous Neumann boundary conditions.

(1) is discretized using finite differences

uh(x, τ)− u0(x)

τ
−∆huh(x, τ) = fh(x), (2)

on a regular grid Ωh with mesh size h and time step τ .

Cell-based multigrid solver using averaging restriction, ωRBGS
smoother and constant interpolation.
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Single Instruction Multiple Data

Buses become wider and wider but ineffective for scalar
operations.

SIMD units exploit the wider buses if
the same operation is done on neighboring values
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and data is naturally aligned in memory.

Example: SIMDized 2D Poisson Jacobi
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SIMDized ωRBGS

Using two – per line – constant SIMD registers, we can treat
vector members differently:
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A red or black ωRBGS sweep is computationally about as
expensive as a damped Jacobi.

Although we effectively invalidate half FLOPs done, the better
internal and external bandwidth of SIMD over the scalar unit leads
to a real performance gain.
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Introduction
A hardware-optimized MG solver

Applications

SIMDization and blocking
Runtime MG vs. FFT
MG convergence rates

Fusion with Calculation of Residual and Restriction
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MG vs. FFT

V FMG FMG FFT DCT FFT
size (1,1) V(1,1) V(2,2) (fftw) (fftw) (mkl)

32 0.43 0.55 0.93 0.40 1.43 0.71

64 3.33 4.29 7.12 3.73 12.2 5.27
128 31.6 44.1 68.3 50.4 123 45.8
256 264 370 574 473 1246 401
512 2168 3026 4699 4174 11067 3510

Table: Wallclock times in ms for FFT (real type, out of place, forward
and backward) and the optimized multigrid on an Intel Core2 Duo
2.4 GHz (Conroe) workstation.
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Convergence Rates

size τ V(1,1) V(2,2)

643 104 0.26 0.07
1283 104 0.28 0.07
2563 104 0.29 0.07
5123 104 0.32 0.07

643 1030 0.27 0.07
1283 1030 0.29 0.07
2563 1030 0.32 0.07
5123 1030 0.34 0.07

Table: Convergence rates measured experimentally for h = 1.0 on the
finest grid and 1 grid point on the coarsest level using 100 vector
iterations (power method).
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Image Denoising: Model

Simple variational based on Tikhonov regularization, minimizing
the functional

E1(u) =

∫
Ω
|u0 − u|2 + α|∇u|2dx (3)

with x ∈ Rd and α ∈ R+ over image domain Ω ⊂ Rd .

Necessary condition for a minimizer u (the denoised image) is
characterized by the Euler-Lagrange equation

u − u0 − α∆u = 0 (4)

with homogeneous Neumann boundary conditions.
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Image Denoising: Computation

1 Convolution of the image with a discrete version of the
Gaussian kernel (stencil),

2 multiplication in Fourier space (5) or

F [Gσ ∗ u0](w) = e−|x|
2/(2/σ2)F [u0](w) (5)

3 application of a multigrid method to (2).
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Image Denoising: Runtimes

method runtime

filtering with mask of size 5× 5× 5 1200 ms
filtering with mask of size 3× 3× 3 681 ms

V (1, 1)-cycle 390 ms
FFTW-package 1140 ms

Table: Runtime for image denoising using a 3D MRI image (size
256× 256× 160) of a human head with added Gaussian noise, measured
on the AMD Opteron platform.
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Image Registration: Model I

Variational approach to minimize the energy functional

E2(u) =

∫
Ω
(T (x− u(x))− R(x))2 + α

d∑
l=1

‖∇ul‖2 dx . (6)
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Introduction
A hardware-optimized MG solver

Applications

Image denoising by blurring
Non-rigid medical image registration

Image Registration: Model II

The optimization of the energy functional results in nonlinear Euler
Lagrange equations. To treat the nonlinearity, an artificial time is
introduced and discretized by an semi-implicit scheme:

(uk+1
h − uk

h)

τ
− α∆hu

k+1
h = ∇hT (x− uk

h)
(
T (x− uk

h)− R(x)
)

(7)
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Image Registration: Runtimes

method runtime

FMG-V(2,2) 608 ms
FMG-V(2,1) 499 ms
FMG-V(1,1) 390 ms

DCT 2107 ms
AOS 1971 ms

Table: Runtime for one linear solve in one time step in the image
registration algorithm for an image of size 256× 256× 160.
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Future Work

Extend multigrid solver to (an)isotropic diffusion.

Implement on CBEA.
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Introduction
A hardware-optimized MG solver

Applications

Image denoising by blurring
Non-rigid medical image registration

Convergence Rates According to LFA

interpolation ω V(1,1) V(2,2)
ρ ρ(M3L) cexp ρ ρ(M3L) cexp

constant 1.0 0.20 0.47 0.04 0.07
constant 1.15 0.08 0.20 0.27 0.04 0.06 0.07
trilinear 1.15 0.08 0.10 0.04 0.06

Table: Smoothing factor (ρ) and three-grid asymptotic convergence
factor (ρ(M3L)) for size 643, τ = 1030 obtained by LFA (using the lfa
package from R. Wienands).
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Image Denoising: Gaussian Kernel

In an infinite domain an explicit solution is given by

u(x, t) =

∫
Rd

G√2t(x− y)u0(y)dy = (G√2t ∗ u0)(x) , (8)

where the operator ∗ denotes the convolution of the grid function
u0 and the Gaussian kernel

Gσ(x) =
1

2πσ2
e−|x|

2/(2σ2) , (9)

with standard deviation σ ∈ R+. This is equivalent to applying a
low-pass filter and can be transformed into Fourier space, where a
convolution corresponds to a multiplication of the transformed
signals.
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Image Denoising: FFT

If we denote by F [f ] the Fourier transform of a signal f : Rd → R
and use

F [Gσ](w) = e−|x|
2/(2/σ2),w ∈ Rd

it follows that

F [Gσ ∗ u0](w) = e−|x|
2/(2/σ2)F [u0](w) . (10)
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Image Registration: Functional

The optimization of the energy functional results in nonlinear Euler
Lagrange equations

∇T (x− u(x)) (T (x− u(x))− R(x)) + α∆u = 0 (11)

with homogeneous Neumann boundary conditions that can be
discretized by finite differences on a regular grid Ωh with mesh size
h. To treat the nonlinearity often an artificial time is introduced

∂tu(x, t)− α∆u(x, t) = ∇T (x− u(x, t)) (T (x− u(x, t))− R(x))(12)

that is discretized by a semi-implicit scheme with a discrete time
step τ , where the nonlinear term is evaluated at the old time level

(uk+1
h − uk

h)

τ
− α∆hu

k+1
h = ∇hT (x− uk

h)
(
T (x− uk

h)− R(x)
)

.

(13)
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